Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 7 de 7
Фильтр
2.
Cells ; 11(16)2022 08 18.
Статья в английский | MEDLINE | ID: covidwho-1997525

Реферат

Clinical and experimental data indicate that severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infection is associated with significant changes in the composition and function of intestinal microbiota. However, the relevance of these effects for SARS-CoV-2 pathophysiology is unknown. In this study, we analyzed the impact of microbiota depletion after antibiotic treatment on the clinical and immunological responses of K18-hACE2 mice to SARS-CoV-2 infection. Mice were treated with a combination of antibiotics (kanamycin, gentamicin, metronidazole, vancomycin, and colistin, Abx) for 3 days, and 24 h later, they were infected with SARS-CoV-2 B lineage. Here, we show that more than 80% of mice succumbed to infection by day 11 post-infection. Treatment with Abx had no impact on mortality. However, Abx-treated mice presented better clinical symptoms, with similar weight loss between infected-treated and non-treated groups. We observed no differences in lung and colon histopathological scores or lung, colon, heart, brain and kidney viral load between groups on day 5 of infection. Despite some minor differences in the expression of antiviral and inflammatory markers in the lungs and colon, no robust change was observed in Abx-treated mice. Together, these findings indicate that microbiota depletion has no impact on SARS-CoV-2 infection in mice.


Тема - темы
COVID-19 Drug Treatment , Microbiota , Angiotensin-Converting Enzyme 2 , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Disease Models, Animal , Melphalan , Mice , Mice, Transgenic , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , gamma-Globulins
3.
Methods Mol Biol ; 2511: 367-373, 2022.
Статья в английский | MEDLINE | ID: covidwho-1941390

Реферат

The use of in vitro methods of infecting cell lines to test new treatments for SARS-CoV-2 does not always recapitulate the real context of the infection, and mouse models for SARS-CoV-2 infection are limited. Here we describe a novel ex vivo approach by collecting, isolating, and culturing nasal epithelial cells obtained from patients with COVID-19. This technique allows us to study immune responses and test new treatments directly on cells from patients naturally infected with SARS-CoV-2.


Тема - темы
COVID-19 , SARS-CoV-2 , Animals , Antiviral Agents , Cell Culture Techniques , Humans , Immunity , Mice
4.
Front Immunol ; 13: 889945, 2022.
Статья в английский | MEDLINE | ID: covidwho-1862612

Реферат

This mini review describes the role of gut and lung microbiota during respiratory viral infection and discusses the implication of the microbiota composition on the immune responses generated by the vaccines designed to protect against these pathogens. This is a growing field and recent evidence supports that the composition and function of the microbiota can modulate the immune response of vaccination against respiratory viruses such as influenza and SARS-CoV-2. Recent studies have highlighted that molecules derived from the microbiome can have systemic effects, acting in distant organs. These molecules are recognized by the immune cells from the host and can trigger or modulate different responses, interfering with vaccination protection. Modulating the microbiota composition has been suggested as an approach to achieving more efficient protective immune responses. Studies in humans have reported associations between a better vaccine response and specific bacterial taxa. These associations vary among different vaccine strategies and are likely to be context-dependent. The use of prebiotics and probiotics in conjunction with vaccination demonstrated that bacterial components could act as adjuvants. Future microbiota-based interventions may potentially improve and optimize the responses of respiratory virus vaccines.


Тема - темы
COVID-19 , Gastrointestinal Microbiome , Influenza Vaccines , Microbiota , Bacteria , COVID-19/prevention & control , Humans , SARS-CoV-2
5.
Front Immunol ; 12: 812176, 2021.
Статья в английский | MEDLINE | ID: covidwho-1662586

Реферат

Although not being the first viral pandemic to affect humankind, we are now for the first time faced with a pandemic caused by a coronavirus. The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been responsible for the COVID-19 pandemic, which caused more than 4.5 million deaths worldwide. Despite unprecedented efforts, with vaccines being developed in a record time, SARS-CoV-2 continues to spread worldwide with new variants arising in different countries. Such persistent spread is in part enabled by public resistance to vaccination in some countries, and limited access to vaccines in other countries. The limited vaccination coverage, the continued risk for resistant variants, and the existence of natural reservoirs for coronaviruses, highlight the importance of developing additional therapeutic strategies against SARS-CoV-2 and other coronaviruses. At the beginning of the pandemic it was suggested that countries with Bacillus Calmette-Guérin (BCG) vaccination programs could be associated with a reduced number and/or severity of COVID-19 cases. Preliminary studies have provided evidence for this relationship and further investigation is being conducted in ongoing clinical trials. The protection against SARS-CoV-2 induced by BCG vaccination may be mediated by cross-reactive T cell lymphocytes, which recognize peptides displayed by class I Human Leukocyte Antigens (HLA-I) on the surface of infected cells. In order to identify potential targets of T cell cross-reactivity, we implemented an in silico strategy combining sequence-based and structure-based methods to screen over 13,5 million possible cross-reactive peptide pairs from BCG and SARS-CoV-2. Our study produced (i) a list of immunogenic BCG-derived peptides that may prime T cell cross-reactivity against SARS-CoV-2, (ii) a large dataset of modeled peptide-HLA structures for the screened targets, and (iii) new computational methods for structure-based screenings that can be used by others in future studies. Our study expands the list of BCG peptides potentially involved in T cell cross-reactivity with SARS-CoV-2-derived peptides, and identifies multiple high-density "neighborhoods" of cross-reactive peptides which could be driving heterologous immunity induced by BCG vaccination, therefore providing insights for future vaccine development efforts.


Тема - темы
BCG Vaccine/immunology , COVID-19/immunology , Cross Reactions/immunology , Peptides/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Viral Vaccines/immunology , Humans , Pandemics/prevention & control , Vaccination/methods
6.
Adv Exp Med Biol ; 1327: 93-106, 2021.
Статья в английский | MEDLINE | ID: covidwho-1316240

Реферат

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, emerged last year in China and quickly spread to millions of people around the world. This virus infects cells in different tissues and causes pulmonary (e.g., pneumonia and acute respiratory distress syndrome), neurological, cardiovascular, and intestinal manifestations, which can be the result of a direct viral effect or secondary to endothelial, thrombotic, or immunological alterations. In this chapter, we discuss recent studies which highlighted the relevance of the intestinal microbiota for other infectious respiratory diseases. We present the "altered microbiota" (dysbiotic) as a point of connection between conditions that are risk factors for the development of severe forms of COVID-19. In addition, we describe the findings of recent studies reporting alterations of microbiota composition in COVID-19 patients and speculate on how this may impact in development of the disease.


Тема - темы
COVID-19 , Gastrointestinal Microbiome , China , Dysbiosis , Humans , SARS-CoV-2
7.
Front Immunol ; 12: 657363, 2021.
Статья в английский | MEDLINE | ID: covidwho-1247860

Реферат

Introduction: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, resulting in a range of clinical manifestations and outcomes. Laboratory and immunological alterations have been considered as potential markers of disease severity and clinical evolution. Type I interferons (IFN-I), mainly represented by IFN-α and ß, are a group of cytokines with an important function in antiviral responses and have played a complex role in COVID-19. Some studies have demonstrated that IFN-I levels and interferon response is elevated in mild cases, while other studies have noted this in severe cases. The involvement of IFN-I on the pathogenesis and outcomes of SARS-CoV-2 infection remains unclear. In this study, we summarize the available evidence of the association of plasma protein levels of type I IFN with the severity of COVID-19. Methods: The PRISMA checklist guided the reporting of the data. A systematic search of the MEDLINE (PubMed), EMBASE, and Web of Science databases was performed up to March of 2021, looking for articles that evaluated plasma protein levels of IFN-I in mild, severe, or critical COVID-19 patients. Comparative meta-analyses with random effects were performed to compare the standardized mean differences in plasma protein levels of IFN-I of mild versus severe and mild versus critical patients. Meta-regressions were performed to test the moderating role of age, sex, time that the IFN-I was measured, and limit of detection of the assay used in the difference between the means. Results: There was no significant difference in plasma levels of IFN-α when comparing between mild and severe patients (SMD = -0.236, 95% CI -0.645 to 0.173, p = 0.258, I2 = 82.11), nor when comparing between patients mild and critical (SMD = 0.203, 95% CI -0.363 to 0.770, p = 0.481, I2 = 64.06). However, there was a significant difference between healthy individuals and patients with mild disease (SMD = 0.447, 95% CI 0.085 to 0.810, p = 0.016, I2 = 62.89). Conclusions: Peripheral IFN-α cannot be used as a severity marker as it does not determine the clinical status presented by COVID-19 patients.


Тема - темы
Biomarkers/blood , COVID-19/diagnosis , Interferon Type I/blood , SARS-CoV-2/physiology , Disease Progression , Humans , Severity of Illness Index
Критерии поиска